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Phase Transitions in Electron Systems with 
Short-Range Pairing Interactions: Ground State 
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We propose a real-space, tight-binding model of electrons with short-range pair- 
ing interactions. The model involves a competition between the ordinary single 
particle hopping t and an attractive interaction V between the singlet electronic 
pairs formed on neighboring lattice sites. The Hamiltonian effectively describes a 
mechanism for pair formation. We study the ground-state properties of its one- 
dimensional version using numerically exact finite chain calculations for up to 
N =  10 sites. The ground-state wave functions, the energy spectrum, and various 
ground-state correlation functions are calculated with the help of an exactly 
equivalent system of two coupled S = �89 spin chains. The results indicate the 
existence of a transition between the band and the localized pairs situation. The 
transition takes place for V/t=l.4++_O.1 and appears to be of essential 
singularity type. Comparison with other models used for pairing phenomena, 
like the negative U-Hubbard model is made. 

KEY WORDS: Cooper pairs; pairing in real-space; finite-size scaling; 
quantum ground-state phase transitions; localized electron pairs; X Y  model; 
Hubbard model; essential singularity of correlations. 

1. I N T R O D U C T I O N  

The  B a r d e e n - C o o p e r - S c h r i e f f e r  (BCS)  t heo ry  of  s u p e r c o n d u c t i v i t y  has  
been  h ighly  successful  in  e x p l a i n i n g  the  p roper t i e s  of a large n u m b e r  of 

i so t rop ic  meta l s  a n d  alloys. The  BCS reduced  H a m i l t o n i a n  reads  

HBcs X ~(k) e~ck~- V, Z' + + : C k , a C k "  o.C k, a, Ck,o- '  ( 1 )  
k,o k,k r 

a,o-' 

where  c~-, is the c rea t ion  o p e r a t o r  of  the  e lec t ron  in  the B loch-wave  state  
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with the wave vector k and the spin a, e(k) is the single-particle spectrum 
of Bloch states, V~ > 0 is the effective attractive interaction, which acts only 
between pairs of electrons with opposite k and a. The prime over the 
second summation in (1) means that only certain values of k and k' par- 
ticipate in the interaction. The interaction Vs originates from the electron- 
phonon interactions, and the elastic properties of the lattice impose the 
cutoff: only those values of k and k' satisfying le (k) -~Fl= 
le(k ' ) -  ZFI < 2COD, where co D is the Debye energy of the underlying lattice, 
contribute to the second term of (1), (ZF is the Fermi energy). The term 
reduced in connection with (1) means that the complete Hamiltonian of 
electrons in a superconductor contains many other terms, but they are not 
of great relevance to superconductivity. The Hamiltonian (1) then singles 
out the terms that behave differently on both sides of the transition point. 
The BCS solution consists in applying the molecular-field theory (MFT) 
decoupling scheme to (1). This is usually justified by noting that (1) leads 
to the creation of Cooper pairs with a very large radius. 

Furthermore, there is an intrinsic assumption about the weakness of 
interaction, Vs~ W, where W is a certain averaged bandwidth, closely 
related to the existence of a bound state of two electrons with an 
infinitesimally small attractive interaction (Cooper effect). Thus, from the 
point of view of critical phenomena, the BCS treatment of three-dimen- 
sional (3D), isotropic superconductors leads (through eq. 1) to a second- 
order phase transition with MFT critical exponents. It can be shown using 
the Ginzburg criterion ~2'3) that for normal superconductors this behavior 
persits up to (T-T~)/Tc,.~ 10 -1~ which means that the critical region 
cannot be attained experimentally. 

In practice, some of the above assumptions may, some other may not, 
be fulfilled, and a problem arises then as to what extent the validity and 
predictions of the BCS theory should be questioned. With decreasing 
dimensionality the role of fluctuations becomes dominant and the 
molecular-field BCS-like theories cease to be reliable. In addition, in low- 
dimensional, especially organic compounds serious complications arise in 
the reciprocal space r and the use of the real-space formulation appears to 
be more secure. 

Real-space formulations, using localized, atomic-like orbitals, have 
been used in several contexts. The superconductivity in narrow d bands 
was studied in the "contact" approximation, r which consists in assuming 
that the components of a Cooper pair are on the same lattice site. The real- 
space pairing has been analyzed with the negative U Hubbard model, i.e. 

HH = Z tuC+Cj. - U~ni~ni~, (U>O) (2) 
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+ and ( 0 )  denotes a nearest-neighbor pair./6) It is clear where l~ia ~ Cia Cia 

that with increasing U/t in (2) the probability of local pairing increases, but 
the mobility of pairs appears only in the second order in the transfer 
integral t. The Hamiltonian (2) has been microscopically derived by 
Anderson (7) in connection with amorphous materials and has been invoked 
to explain the bipolaron transition./8'9) The Hartree-Fock (HF) analysis of 
(2) has been carried through (1~ and 1D exact wave functions are also 
available. (11) Also, (2) has been called on in several experimental 
contexts. (~z) Very recently, Nozi6res et al. ~ have analyzed the transition 
between the weak (BCS-type) and strong (negative U) coupling super- 
conductivity. They emphasize that within an extended HF-approximation 
the Hamiltonian (2) does not give a right U/t dependence of Tc (for 
U/t >> 1). They advocate the use of a nonlocal pairing interaction, which 
should provide a better link between the weak and strong coupling regimes 
in superconductivity. 

In this paper we introduce a real-space model with an effective attrac- 
tion of singlet electron pairs formed on different lattice sites and discuss the 
ground-state properties of its 1D version using the finite-size scaling (FSS) 
method. (A complete review of this method is given in Ref. 14.) The FSS 
has the distinct advantage of not being limited to particular values of the 
coupling constants. It utilizes exact solutions of finite systems. The paper is 
organized as follows: in Section 2 we define the fermionic model and 
discuss its invariance properties; in Section 3 the Jordan-Wigner transfor- 
mation is used to obtain an exact representation of the model in terms of 
two coupled spin chains; in Section 4 we describe the finite-size scaling 
method applied to the spin representation; in Section 5 we present the 
results for various ground-state properties, like the ground-state energy, 
different energy gaps in the spectrum and various correlation functions in 
the ground state. The results suggest the existence of a transition at T=  0. 
In Section 6 the discussion and conclusions are given. 

2, THE MODEL AND ITS S Y M M E T R Y  PROPERTIES 

As mentioned in the Introduction, the BCS Hamiltonian (1) is defined 
in the reciprocal space and the radius of the Cooper pairs is large. Here, we 
attempt to construct a pairing interaction in real space which is short- 
ranged. 

If ci + creates an electron with spin a at site i of a regular lattice 
({ci~, c f , ) =  ~ij 6~,) then we can define a pair creation operator b +(t) 

b + ~ t ~ -  + + (3 )  - -  CiT Ci+t,~ 
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A general interaction between such singlet pairs can be written as 

V = - ~, Vo.(l, l')(b+(').b~")+ h.c.) (4) 
i,j 
1,l' 

For general (i, j)  and (/, l') one is dealing with overlapping fermion pairs, 
very much like in (1). Without elaborating about the microscopic origin of 
interaction we simply stipulate that the dominant contributions in (4) come 
from nearest-neighbors i and j and, additionally, / = / ' = 0 ,  with 
Vu(0,0)= V, V>0. The resulting Hamiltonian, including the kinetic 
energy and the chemical potential terms now reads 

2 + : l iyCia Cj~r 
i,~ </j>,,~ 

- -  V ~ ,  ( C i ~ C i + ~ C j j C j T ~ - C ~ C ~ C i j C i T ) - - I . I ~ n i a  (5) 
<q> i,~ 

Equation (5) presents a well-defined quantum mechanical problem whose 
solution depends on the temperature T, the dimensionality of space, and 
the filling of the band, defined by the electron density p 

or p = (Sge)/N, where R e is the number operator of electrons and N is the 
number of sites in the system. Evidently, 0 ~< p ~< 2 and the half-filled band 
corresponds to p = 1. 

Some symmetry properties of the Hamiltonian of (5) can be obtained 
by noting that H is invariant with respect to the following transformation 
of electron operators 

~q- )m 
Cm~ "-at ( - -  1 Cm~ " 

(7) ~q- )m Cm+ ~ (--1 CmT 

The transformation (7) is canonical, i.e., it preserves the fermion com- 
mutation relations. It is a combination of a particle hole and a local gauge 
transformation with a gauge factor e i~'(m) with ~(m)=rnm From (7) it 
follows that 

H(t, V) - # ] V e  : ffI(t, V) + i ,~  e - 21~N (8) 

and for the grand partition function Zu(t, V), one obtains [f l= (kBT) 1] 

In Z,( t ,  V)= 2fllzN+ In 2_ , ( t ,  V) (9) 
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From this last relation one can show that for p = 1 the chemical potential 
# = 0. Differentiating both sides of (9) with respect to #, we get 

1 ~3Z~(t, V) 1 ~32_~(t, V) 
=2Ns (10) ~ /3 ~(-~) 

For p = 1, (Ne 5 = N which implies 

~z.(t, v)=~2_~(t, v) 
(11) ~ ~(-~)  

o r  

~ = 0  (p = 1) (12) 

In the following we consider p = 1. The interaction V describes the 
nearest-neighbor hopping of singlet pairs formed on the same site. From 
the Pauli principle hopping from i to j can only be effective if site j is 
empty. Then, with increasing V/t, the energy will be lowered if singly 
occupied sites are eliminated from the wave function. In the limit V = 0, the 
single-particle hopping t acts the same way on singly and doubly occupied 
states. In fact, for V= 0, electrons with different spin are uncoupled and we 
have a system of two independent tight-binding fermions, whose properties 
are known. In the limit t = 0 there are no singly occupied sites and the two 
possible occupancies (empty or doubly occupied) can be described by 
introducing S = �89 pseudospins Ti with T + = c~ c,~- and T~ = �89 + ni+ -- 1) 
with the eigenvalues Ty = _+�89 corresponding to doubly occupied and empty 
sites, respectively. The Hamiltonian for t = 0 can be written down as 

H= -2V ~ (T~T] + T[Tf) (13) 
(ij> 

i.e., is of the form of a S = �89 model. Its properties are exactly known in 
1D and partial information exists for higher dimensionalities, too. (15) For 
intermediate couplings, H interpolates between these two extremes. 

Some insight into the properties of Hamiltonian (5) can be gained 
from the analytical solution of the simple case N =  Ne = 2, presented in 
Appendix I. 

As can be seen from (A7), the ground-state wave function in the 
absence of interaction contains empty, spin-up, spin-down, and doubly 
occupied sites in equal proportions. In contrast, for t = 0, singly occupied 
sites are suppressed and only empty and doubly occupied sites contribute 
to the wave function. This picture clearly persists for other values of N and 
Are. In Fig. 1 we depict, for the half-filled band, N =  Are = 8, the corn- 
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(a) 
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/ 

(b) 

Fig. 1. Typical configurations of the ground state of a chain of N = 8 sites: the state shown in 
(a) has the largest amplitude for V/t ~ 1 and the one in (b) for V/t>> 1. In both cases 
S~= zz= 0. In the latter case the pairing induced by the interaction term is clearly visible. 

ponents with the largest weight of the ground-state wave functions in the 
sector ~2~=1 S f = 0 ,  for V/t small (Fig. la)  and V/t large (Fig. lb). 

One would like to understand the nature of the process of the increase 
of the number  of paired sites in the ground state of (5), i.e., the pairing 
transition. As the first step we will undertake an analysis of the simplest, 
albeit still not exactly soluble, 1D version of Hamil tonian (5). 

3. T R A N S F O R M A T I O N  TO T H E  C O U P L E D  C H A I N  S Y S T E M  

The Hamil tonian of (5) when rewritten in 1D takes on the following 
form 

+ 
H ~ - t  2 (C+mr Cmr 

+ 4- 4- 4- --V~(c,,TC,qC,,+l~Cm+lT+C,~+lTCm+l~Cm~CmT ) (14) 
m 

The Hamil tonian (14) involves only nearest-neighbor terms and it turns 
our that in this case it is possible to use the generalized Jordan-Wigner  
transformation to map (14) into an equivalent system of S =  �89 spins. 

To this end we first introduce a set of Paulions amr associated with the 
sites m. The Paulions ant icommute on site with the same spin and com- 
mute on different sites. They satisfy the following commutat ion relations 

+ + ~mm,~,(1 --2a+,~am~) (15) amaam,a, - -  arn, a, ama = 



Phase Transitions in Electron Systems 135 

For  a chain of N sites the generalized Jo rdan -Wigne r  (JW) t ransformat ion 
i s  O6) ( m l )  

+ -  + exp i~ ~ c~cls am; --  Cml 

I=1 (16) 

a+T -- cmT+ exp iTz c~ czT + 2 c~ c,~ 
1 1 l = 1  

Upon  observing that  from (16) + + C m a C r a  a : ama ama , we can now introduce 
two sets of S = �89 spin operators  per site Sm and 17 m by identifying 

and 

a+~. : S m  + 

a m ,  L : Sr~ 

+ 1__ + 
Cm,[ Crn$ __ 2 - -  a m  + a m . [  _ 1 _ z - -  S m 

(17a) 

+ + 
8mT : T m 

amt  = Z  m (17b) 
+ 1__ + z 

Cm~ C m  T - -  ~ - -  a m T  a m  T - -  �89 ~ 75 m 

With (17) we can rewrite (16) as 

+ = ( - 2 s  + Cm$ Sm 

[ml_  ] 
Cm,[~--- l H  (--2Sf) S m 

(18) 

em+~ = (-- 2s (-- 2S~ ~m 
= 1  

The operators  Sm and T m satisfy separately the usual spin commuta t ion  
relations and [s~,  z~,] = 0, for all ~, fl, m, m' (a, fl = X, Y, Z). With (18), 
the Hamil tonian  of (14) can be rewritten as 

+ "~m + - + - H=t~(Z+Zm+l+Zm+l +SmSm+~+Sm+lSm) 
m 

+ - + + + S m )  - -  V~(~,.~m+lS msy,+l+rm+l~msm+l 
m 

(19) 
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t 

T m = -~ _- _ 

t 

-V  

Fig. 2. Schematic representation of the coupled spin chains of (19): the kinetic energy term t 
acts on each chain independently; the interaction V couples them. 

It represents a special case of two coupled chains with the X Y  symmetry. 
The hopping terms corresponds to two independent X Y  chains. The pair- 
ing term is a four-spin interaction with the X Y  symmetry (the equivalence 
between the chain of interacting fermions and two coupled spin problems 
have been used for the Hubbard model in Shiba, Ref. 17, and for the 
Kondo necklace problem in Jullien et al., Ref. 17). This interaction has 
only nonvanishing matrix elements between the states having the same 

z = z z z _ ~) separately with additional condition values for (s m, ~,,) and (s,~_+t, ,,+ 
SmZ ____ __S mz + ~. Thus, the model can be viewed as two coupled X Y  chains. 

Using (17a, b), the total number of electrons ~ m  (n ,~ ,+nm+) can be 
reexpressed as 

N e - = ~  (nmt + n , , q ) = N  + S~ + z~ (20) 
m 

where S= = ~"~,m S~ and T= = Z z~, with [H, S ~ ] -: [H, T=] = 0. The interacting 
system of (19) is presented schematically in Fig. 2. 

4. A N A L Y S I S  OF THE G R O U N D  STATE 
T H R O U G H  T H E  FINITE-SIZE SCALING M E T H O D  

The ground state of (19) is only known exactly in the limiting 
situations V= 0 or t =0.  In order to gain some information about the 
properties of the system for intermediate values of V/t,  we have chosen the 
use of the FSS method which, when combined with phenomenological 
renormalization (PRG), (18) yields reliable results for ground state of a 
number of different low-dimensional quantum systems. References 19 
through 30 give a representative choice of work in this field. 

The FSS method is based on analysis of exact solutions of the 
Hamiltonian problem as a function of system size N. The results are then 
extrapolated to the N ~  oc limit with the help of appropriate scaling 
hypotheses. Although theoretically the quality of the extrapolation 
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procedure increases with increasing N, in practice FSS appears to work 
well even for rather small values of N. The aim of the FSS analysis of (19) 
is the determination of the spectrum and of the eigenfunctions of (19) as a 
function of V/t. For the two limiting cases V= 0 and V= ~ ,  we have two 
uncoupled X Y  chains and the X Y  chain of pairs (sin, ~ ) ,  respectively. To 
investigate the low-lying spectrum we study the following energy gaps: if 
E~oN)(s ~, "c ~) is the ground state in the sector of given s ~, ~,  then define the 
single particle gaps Z]~ N) and the pair gaps A~m as (from now on we use the 
representation in which (S~m) 2 = (L~) 2 = 1 ) 

zI]N)(s ~, ~ )  = E~ON~(S ~ + 2, ~ )  -- E~om(S ~, r z) 

~- E(oN)(s z, 72 z -~- 2 )  - -  E{oN)(s z, ~2 z)  ( 2 1 )  

and 

= + 2, + 2 )  - (22) 

In the following we are mainly interested in the sector of the absolute 
ground state with SZ=zz=  0 (16~ or, through (6) and (20), p = 1. AI u) and 
A~ N~ give the energy differences by injecting a single particle and a pair of 
particles with opposite spins in the system. 

For V = 0  and N = ~ ,  the spectrum is gapless and A~m(0,0)= 
2A~W/(0, 0) and A ~ N  -1 for finite N as N ~  ~ .  For t = 0  the model can 
be described by a single X Y  interaction, so we expect that z](2 u) "-~'N~ vo 0. 
On the other hand, A1 corresponds to adding a single particle 
(analogously, one could break a pair) and therefore remains finite. If a 
transition exists there should be a single particle excitation spectrum with a 
gap A I opening above a certain (V/t)~. Note that similar considerations 
applied to the original version of the BCS-Hamiltonian (1), see Ref. 31. 

In order to verify the picture of the transition we have performed 
numerically exact calculations on finite chains with N~<10 sites and 
periodic boundary conditions. To cross-check the results we carried 
through the calculations using both the double-chain version (19) and its 
equivalent S=-32 Hamiltonian on a single chain, with interaction whose 
matrix elements correspond exactly to those of (19). This last represen- 
tation is described in Appendix II. 

We have used the following symmetries to reduce the size of matrices 
to be diagonalized: the total z components S z and r~, the left-right parity of 
the periodic chain, and the wave vector (2~/N)- m with m -- 0,..., N -  1 are 
used as good quantum numbers. In addition, for S ~= T ~= 0 the reflection 
parity Sm ~ --Sin and 'I; m ~ --~m is utilized. The direct diagonalization is 
done for N~< 6 and we use the iterative Lanczos tridiagonalization scheme 
for 6<N~< i0 which determines, for a given subspace, the ground state 
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wave funct ion l 0 )  and  the lowest  pa r t  of the spectrum.  Wi th  the knowledge  
of l 0 )  cor re la t ion  funct ions of  var ious  ope ra to r s  8, ~0 L~,. + Oil O) have been 
also de termined.  

5. R E S U L T S  

W e  now presen t  the numer ica l  f ini te-chain (N~< 10) results for the 
one -d imens iona l  m o d e l  (19). F i r s t  the g round-s t a t e  energy has been deter-  
mined  and  its l imi t ing values for V--* 0 and  t--* 0, respectively,  have been 

1 E 0 
N t 

6.0 

N=2 
5.5 

5.0. 

/~.5 

~.0 N =4 

N=6 
3.5 ~ N =8,10 

/ 
3.0 

/ 
2.5 / 

/ 
2.0 " 

1.5 

10 t 
0.5 

o i 5 i g 
t 

Fig. 3. The ground-state energy per site, - E o / ( N "  t) as a function of Fit. The exact results 
for V=0 and N--* oo is indicated by (*). The limiting cases, V--*0 and t--*0 approach the 
exactly known results of the X Y  model as N --* oo. The dashed line shows the exact slope as 
V/t ---* oo and N --* co. 
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verified to reproduce the exact results for the XY chain. (32) The ground- 
state wave function always lies in the sector SZ= Tz= 0, has a wave vector 
k = 0, and a positive parity of left-right exchange of the periodically boun- 
ded chain. In Fig. 3 the ground-state energy per site, eo = Eo/N is shown as 
a function of V/t and it satisfies ( l / t )eo  (V=  0 ) =  2eo (t = 0 ) /V=  -4/re (see 
Ref. 32), as N--, oo. As for most of the results the data are shown for N 
even only. We point out again that for the results we use the convention 
that 

.z('0 "~i - -  S i  - -  

In order to characterise the transition from the unpaired (V-- O) to the 
paired (t--O) state, we consider the low-lying spectrum. Notably we 

Fig. 4. 

V 

2.0- 

~.0" 

even 

=-- �9 : - N odd 

0.12. 5 0.25 015 1/N 

Energy gap z~tN) of single particle excitations (SZ= 1~ z~= 0) for V/t = 20. The results 
plotted versus N -1 clearly indicate that  A~ N) remains finite as N ~  oo. 
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calculate low-lying excitations both in the sector of the ground state and 
when adding an extra particle. The transition is not expected to be easily 
detectable in the ground-state sector, as in both limits V ~ 0 and t--, 0 the 
model is an X Y  model, either of single fermions or of pairs glued together. 

For both V/ t  ~ 0 and V/t  ~ oo there is no energy gap. This makes it 
more difficult to investigate the model with FSS methods than, for exam- 
ple, the Hubbard model, where there is no low-lying continuum for 
U/t--* + oo. The reason is that the interaction term in our model does not 
bind the fermions locally but favors their hopping in pairs. Single particle 

A(N) 
1,2 

t 
12 

(2) 
1 

10 

N=A 

N=8 

t 

Fig, 5. Energy gaps z~] N) for single particle, respectively, d~ N) for pair excitations with 
opposite spin, as a function of V/t. Both A~ jr) and zl~ N) tend to zero for small V/t but only zt(z N) 
for V/t large. A~N)<A~ N) for small V/t and AtN) 2>A(N) for large V/t, which leads to a crossing 
of the levels. 



Phase Transi t ions in Electron Systems 141 

excitat ions block the mobi l i ty  of  the pairs for V large, and hence are 
energetically unfavorable.  

We define the single particle, respectively, pair  gaps, as 
A I = E o ( 2 , 0 ) - E o ( O , O )  and A z = E o ( 2 , 2 ) - E o ( O , O  ). Eo(SZ, v z) is the 
ground-s ta te  energy in the sector with given S z, vz. Figure 4 shows A 1IV for 
V/t = 20 as a function of N -  1. This establishes quite convincingly that  for 
large V/t there is a finite energy gap  for single particle excitations. The  
results for even and odd N bo th  tend toward  the same value for N--* oo. 

In Figure  5 the gaps  A1 and A2 are shown for different N as a function 
of V/t. For  V ~  0, A2 is exactly twice A1 since the two chains act indepen- 

N 
~ . (NI I0 

I~ ~]l 2 
t /8 

/ 

N = 6,8,10 

10 

0 
o ~ 2 3 6 v 4 

Fig. 6. Scaled gap NA~ N) ( . )  and NA~ N) (o) as a function of V/t. The pair excitations con- 
verge very rapidly to a limiting value; N= 6, 8, 10 cases are indistinguishable. For A~ N) they 
converge well for V/t <~ 1 and they indicate a finite gap for V/t >> 1. 



142 Kolb and Penson 

dently, and both A 1 and A2 vanish as N i when N ~  ~ .  For  large V/t, At 
always lies above A2 since the S z = 2, zz = 0 gap is finite but the S z = z z = 2 
gap vanishes when N ~ ~ .  Hence there is a crossing between the two gaps. 
It is more instructive to look at the scaled gap NA ~), where gaps for dif- 
ferent N should lie on top of each other for a continuum of excitations, i.e., 
for A 2 for any value of V/t and for A1 for V/t small. In Fig. 6 the scaled gap 
NA ~U) is plotted versus V/t for different values of N. It suggests that there is 
a continuum of excitations up to a finite value (V/t)* above which the gap 
A I opens. The small V/t values are shown separately in Fig. 7, indicating 
that even for small N, the asymptotic form NA~ N) --+ const (independent 
on N) is satisfied quite well. As is known from numerous studies, (14) it is 
very difficult to reliably determine from such plots at what value of V/t the 
gap opens if the transition is of the type essential singularity. Thus these 

Am _l N.yj 
5./-. -I 

5.0 

4.6 

3.8 

3.4 -I///N=8 

3 . 0 ~  
0.0 OiL 0.8 1.2 1.6 V 

t 
Fig. 7. Scaled gap N- A~ m for small V/t (from Fig. 6). The curves for N = 4, 6, 8 are very 
close, N =  10 coincides with N = 8 .  The curves indicate a planar region extending up to 
V/t>~l. 
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curves merely serve to establish the qualitative picture. The actual deter- 
mination of the transition point (V/t)* comes from comparing Al and A2. 

As AI <A2 for V/t small and a finite gap for A1 implies A~ >A2 for V/t 
large, the crossing of A1 and A2 certainly occurs for (V/t)<~ (V/t)*. Hence, 
this crossing serves as a lower bound for the transition point (V/t)*. 
Figure 8 shows the values of (V/t)* where A~ u) = A(2 N) for increasing values 
of N. It suggests (V/t)*=l.4+_O.1. As A1 opens at about this value in 
Fig. 6, (V/t)* = 1.4 seems to be the actual transition point. Let us mention 
that the odd N values behave similarly to the ones presented. 

We have also applied the PRG, i.e., we have searched for solutions of 
N" A ~U) [ ( V/t)c] = N'" A ~N') [ ( V / t ) c ] .  As is observed frequently for XY-like 
systems, (t4~ the values (V/t)c (N, N') do not agree with (V/t)*. Describing 
the region 0 <  V/t< (V/t)* with a line of fixed points, (V/t)c (N, N') can 
tend toward any of these fixed points. In the present model 

lira (V/t)~(N,N')=O 
N,N' ~, co 

An indication that there is a region of fixed points is the behavior of the 

Fig. 8. 

J 

/ 
/ 

i I 

0 0.125 0.25 1 
N 

Crossing of g a p s  A~ N) (V/t) and A(2 N) (V/t) plotted versus N 1. It gives an estimate 
(lower bound) of the transition (V/t)*= 1.4 4-0.1. 



144 Kolb and Penson 

critical exponent v(N, N') calculated at fixed points of PRG. The values 
v(N, N') diverge in the PRG analysis. 

As additional evidence for a gapless region up to a finite value of V/t 
we have plotted in Fig. 9 the gap A~ u) as a function of N with V/t as a 
parameter. If in the whole gapless region zJ~U)~ [A(V/t)/N] z, where the 
amplitude A(V/t) does not depend on N and z = 1 is the dynamical critical 
exponent, then the gapless region on a log LJ]U) - log  N plot should be seen 
as a set of straight lines for different V/t. Indeed on Fig. 9 the straight lines 
are observed up to V/t = 1.4. For  V/t >> 1 no such behavior is found. (There 
are slight oscillations for N/2 even and odd.) The ground-state correlations 
have been evaluated and their behavior is consistent with the above con- 

In 
t 

\ 
\ 

O. 

-1 

1.4 

0.6 

0.2 
0 

I n N  

Fig. 9. Log-Log plot of the energy gap A]N) versus N. The dotted line corresponds to a 
dynamical critical exponent z = 1. For V/t < 1.4 the points follow the expected straight line; 
for V/t >> 1 they turn upward: there is no scaling. Even and odd values of N/2 oscillate slightly. 
The parameter is the coupling V(t = 1 ). 
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N ~ 
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1 2 3 4 5 6 V 
t 

Fig. 10. On-site s Z - z  ~ correlations g =  <0 l s~y l0>  versus V/t .  The unpaired value g = 0  at 
V = 0 gradually increases toward the fully paired value g = 1 at V = ~ .  The crossing of the 
curves and the inflection points occur around V/ t  = ( V / t ) *  = 1.4. 
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Fig. 11. Second derivative ("specific heat") of the ground-state energy as a function of V. At 
( V / t )  ~ 1.4 a max imum develops. This max imum appears to remain finite as N-~  ~ .  

822/44/I-2-10 
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clusions. The local on-site correlation function g =  (0 Is~'rzl 0 )  measures 
the degree of pairing. It is shown in Fig. 10 for p = 1. For V = 0, g = 0 for 
all N and for V--* o% g--, 1 as N ~  o% indicating that there is complete 
pairing. The extrapolated curve for N =  oo has an inflection point at 
approximately V/t = (V/t)* = 1.4. At the same point there is also a crossing 
of the curves for different chain lengths N. 

In Fig. 11 we have presented the second derivative of the ground-state 
energy with respect to the coupling V/t. This quantity corresponds to the 
specific heat in TO-0 phase transitions. It can be seen that this quantity 
develops a maximum as a function of N. This maximum appears close to 
(V/t) ~ 1.4. The long-range properties of two correlation functions have 
also been calculated. The single-particle correlation c(r) = 
(01(si~sl +h.c . ) [0)  has been obtained for r = N / 2  (periodic chain) as a 
function of V/t. In Fig. 12, c(r = N/2) is shown for different N. As N--, o% 
c(N/2)-* 0 as expected. The shape of c for finite N shows the amplitude 
with an inflection point separating the small V/t from the large V/t 
behavior. In Fig. 13 the pair correlation (for r = N / 2 )  C(r)= 
(0 I(s~- v + s l  Tr + h.c.)l 0 )  is plotted versus N. An analogous behavior to the 
one in Fig. 12 is observed. For V/t large, the correlation for finite N is 
larger as V/t favors the pairs over the independent particles. 

c 
0.6 

N 

2 

0.3 

0 I ' - -  
I 2 3 4 8 12 

v/t  

Fig. 12. Ground-sta te  correlation function c(N/2)= (Ol(s{s~/2 + h.c.)[0) versus If. 
c(N/2) --* 0 for all V as N-- ,  0% the amplitude having a different curvature for V small and V 

large. 
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C 

Fig. 13. 

1.0 

0.5 
N 

0 1 2 3 z. 8 12 

v/t 
Ground-state correlation function C(N/2) = (OJ (s[ ~ s~/2 r~v~2 + h.c.) 10) versus V. 

The correlation for V large (N finite) is stronger than for V small. 

6. CONCLUSIONS 

In conclusion, we have investigated a new model for electronic-pair 
formation in order to determine the properties of the transition from the 
unpaired to the paired state. The interaction induces pairing by favoring 
hopping of pairs of electrons with opposite spin. In a one-dimensional 
model we find that the transition is of type essential singularity and occurs 
at a finite value of the interaction. This is in marked contrast to the 
Hubbard model where an infinitesimal interaction already induces the 
transition. The important difference between these two models of local 
pairing is that in our model the mobility of pairs is large but the presence 
of single particles reduces the mobility of pairs. For the Hubbard model 
there is a direct local attraction between the electrons which actually 
hinders the mobility of pairs. 

A C K N O W L E D G M E N T  

This work has been supported 
meinschaft. 

by the Deutsche Forschungsge- 

APPENDIXI .  SOLUTION OF HAMILTONIAN (5) 
FOR N o = N = 2  

We limit ourselves here to the subspace ~ z =  Z2= 1 (n/t -ni~) = 0 where 
~z is the z component of the electron spin. The other subspaces are trivial, 
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since V has vanishing matrix elements in them. Introduce four basic 
functions 

I1) + + = c . c u l 0 )  

13) = c ~ c ~ 1 0 )  

12) = c~c;,L0) 

14 ) = c2 ~} c2~ 10 ) 

(A1) 

where the subscripts 1 and 2 refer to the sites 1 and 2, respectively. By 
acting with the Hamiltonian we get 

HI1)  =t(12) + 1 3 ) ) -  V[4) 

HI2)  = t ( l l )  + 14)) 

H I 3 ) -  t ( l l )  + 14)) 

HI4)  = t([2) + 13 )) - gl 1 ) 

(A2) 

or introducing normalized linear combinations 

1 
t P l = ~ ( l l )  + 14)) 

t#2=~22 (12) + 13)) 

(A3) 

the Hamiltonian matrix in the (01, 02) basis is 

/~ - V  

The linear combinations with the minus sign, i.e., I 1 ) -  L4), have matrix 
elements independent of t and have no influence on transition. 

The ground-state energy is 

V x/V 2+ 16t 2 
Eo . . . .  (A4) 

2 2 

and the normalized ground-state wave function 

1 
I0) = - - ~  [a(t, V)(I1 ) + 14)) + b(t, r)(12) + 13>)3 

, / 2  
(AS) 
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where the coefficients of the wave function are 

( 8t 2 + V 2 + x/V 2 + 16t 2 ~ I/2 l 

a(t, V)=k.1--~t:+ ~--~+-~--~+-l--~tzd - . ~  for V=0  

= 1 for t = 0  

b(t ,  V) = --Q 8/2 ~ 1/2 1 
16t2+V2+x/V2+16t2J  = ~ for V=0  

= 0 for t = 0 

(A6) 

We observe (a) that in absence of interaction (V=0)  the ground-state 
wave function is an equally weighted linear combination 

1 
10)=~ (115 + 145-125-135)  (A7) 

with energy Eo = -2 t ;  (b) in the absence of hopping (t = 0) only two basic 
functions survive 

10) = ~ 2  ( l l )  + 145) (A8) 

with the energy Eo = -V .  
We proceed now to compute various averages in the ground state l05. 

The average occupation of site 1 with an electron with up spin is 

(01nlTt0) 1, 2 =~ta  +b2)=�89 (A9) 

The total number of electrons evidently gives (0 [ ~ =  1 (nit + n~,)] 0 ) = 2. 
The average occupation of site 1 by a pair of electrons is given by 

a 2 
(0[ nlTn1~ L0 ) =-~- (A 10) 

The total occupation by pairs is given by 

2 a2 1 
(0] Y, n , tn i l l0)= 2 for V=0  

i=l  

= t for t = 0  (All)  

Similarily, the average value of interaction in the ground state is obtained 
as 

--  V~0[ ( c ~  r  c2~ " c2T -~- h ,c . ) [0 ) = - Va 2 (A12)  
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Last, the average of the kinetic energy in the ground state is 

t (Ol ( ~  e2-~c2~ + h.c.) lO > =4tabwo ~ -2 t  (A13) 

in agreement with (A7). 
Note that a convenient measure of pairing in the system is provided by 

the (All) .  It can be taken over for other values of N and Ne as it has been 
done in the body of this work. 

APPENDIXII .  REPRESENTATION OF TWO-COUPLED 
S=�89 SPIN CHAINS AS A S = ~  SPIN CHAIN 

In order to numerically solve the eigenvalue problem posed by (19), 
we have considered the equivalent formulation in terms of a single S = 
spin chain with an appropriate interaction. This is suggested by the fact 
that both the two coupled S = �89 spins and the single S = 3 spin have 4 df 
per lattice site. First, we write down the correspondence between the S = �89 
and the S--- 3 problem. Denote the S = -~ spin operators by (jx, jy, j~), the 
value of J-" in terms of s z and "c z can be read off in the following table 

27z 1 - �89 

-�89 +�89 
-�89 

The Hamiltonian (19) consists of a number of spin raising and lower- 
ing operators. To find the corresponding S = 3 representation, we need the 
equivalent of, say, s + in terms of J+,  etc. According to the table, s + raises 
the quantum number by 2, hence s + is replaced by (j+)2. The propor- 
tionality factor directly follows from the coefficients in 

and 

and hence 

s + l m ) = ~ 3 - m ( m + l ) l m + l )  

J+ Im) = X/15-  m(m + 1)Irn+ 1) 

s + ~ (J+)2/(2 wf3) 
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and analogously for s - .  r + in the representation jz raises the m quantum 
number by 1, hence r+ is proportional to J+. The transition 
J+ [- �89 =21�89 has to be excluded, however, as this flips both the S and 
spins. This is accomplished by including a factor ( 4 - J + J - ) .  The 
correspondence then is z+ ~ ( 1 / , ~ / 3 ) J + ( 4 - J + J  -) and similarly for z . 

The Hamiltonian (19) then reads in terms of J 

H=Sm J+m(4--JmJ~)'Jm+~(4--Jm+~Jm+l)+-~(J+m (Jm+l) 2 

V m~ + + " (4--Jm+lJm+l+). ( j+ ]2. (Jm+ 1) 2 + h.c. 1-08 J+m(4--JmJm)'Jm+~ m, 

The symmetries of the original problem manifest themselves directly in the 
S =  3 representation: (1)the wave vector and the left-right parity of the 
chain is exactly as before, (2) the total value of jz is conserved as a con- 
sequence of the conservation of s Z and vz, (3)changing jz into - J ~  
corresponds to s Z ~  - S  Z and r z ~  - z  ~. 
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